A Wavelet Based Method for Affine Invariant 2 D Object Recognition

نویسنده

  • Ahmet Enis Çetin
چکیده

Recognizing objects that have undergone certain viewing transformations is an important problem in the field of computer vision. Most current research has focused almost exclusively on single aspects of the problem, concentrating on a few geometric transformations and distortions. Probably, the most important one is the affine transformation which may be considered as an approximation to perspective transformation. Many algorithms were developed for this purpose. Most popular ones are Fourier descriptors and moment based methods. Another powerful tool to recognize affine transformed objects, is the invariants of implicit polynomials. These three methods are usually called as traditional methods. Wavelet-based affine invariant functions are recent contributions to the solution of the problem. This method is better at recognition and more robust to noise compared to other methods. These functions mostly rely on the object contour and undecimated wavelet transform. In this thesis, a technique is developed to recognize objects undergoing a general affine transformation. Affine invariant functions are used, based on on image projections and high-pass filtered images of objects at projection angles . Decimated Wavelet Transform is used instead of undecimated Wavelet Transform. We compared our method with the an another wavelet based affine invariant function, Khalil-Bayoumi and also with traditional methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dyadic Wavelet Affine Invariant Function for 2D Shape Recognition

ÐDyadic wavelet transform has been used to derive an affine invariant function. First, an invariant function using two dyadic levels is derived. Then, this invariant function is used to derive another invariant function using six dyadic levels. We introduced the wavelet-based conic equation. The invariant function is based on analyzing the object boundary using the dyadic wavelet transform. Exp...

متن کامل

Affine Invariant Contour Descriptors Using Independent Component Analysis and Dyadic Wavelet Transform

The paper presents a novel technique for affine invariant feature extraction with the view of object recognition based on parameterized contour. The proposed technique first normalizes an input image by removing the affine deformations using independent component analysis which also reduces the noise introduced during contour parameterization. Then four invariant functionals are constructed usi...

متن کامل

Multiscale Object Recognition under Affine Transformation

A method to recognize planar objects undergoing affine transformation is proposed in this paper. The method is based upon wavelet multiscale features and Hopfield neural networks. The feature vector consists of the multiscale wavelet transformed extremal evolution. The evolution contains the information of the contour primitives in a multiscale manner, which can be used to discriminate dominant...

متن کامل

Wavelet Transform for Partial Shape Recognition Using Sub-Matrix Matching

In this paper, we propose a method for 2D partial shape recognition under affine transform using the discrete dyadic wavelet transform invariant to translation well known as Stationary Wavelet Transform or SWT. The method we propose here is about partial shape matching and is based firstly on contour representation using the wavelet transform. A technique of sub matrix matching is then used to ...

متن کامل

Robust Geometrically Invariant Features for 2 D Shape Matching and 3 D Face Recognition

Invariant features play a key role in object and pattern recognition studies. Features that are invariant to geometrical transformations offer succinct representations of underlying objects so that they can be reliably identified. In this dissertation, we introduce a family of novel invariant features based on Cartan’s theory of moving frames. We call these new features summation invariants. Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003